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Cooperative Games
Lecture 8: Simple Games

Stéphane Airiau

o o Simple games: a class of TU games for modeling voting.
ILLC - University of Amsterdam o Measuring the power of a voter: Shapley Shubik,

Banzhaff and Co.
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Simple Games

Definition (Simple games)
A game (N,v) is a Simple game when
the valuation function takes two values

o 1 for a winning coalitions
o 0 for the losing coalitions

v satisfies unanimity: v(N) =1
Simple games v satisfies monotonicity: S C T = v(S) < v(T)

One can represent the game by stating all the wining coali-
tions. Thanks to monotonicity, it is sufficient to only write
down the minimal winning coalitions defined as follows:

Definition (Minimal winning coalition)

Let (N,v) be a TU game. A coalition € is a minimal
winning coalition iff v(€) =1 and Vi € €, v(€\{i}) =0.
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Example Formal definition of common terms in voting

Definition (Dictator)
Let (N,v) be a simple game. A player i € N is a dictator
iff {i} is a winning coalition.
N ={1,2,3,4}. Note that with the requirements of simple games, it is possi-
ble to have more than one dictator!

We use majority voting, and in case of a tie, the decision of

player 1 wins. Definition (Veto Player)

Let (N,v) be a simple game. A player i € N is a veto
The set of winning coalitions is player if N\ {i} is a losing coalition. Alternatively, i is a
{1,2},{1,3},{1,4},{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}}. veto player iff for all winning coalition €, i € C.

It also follows that a veto player is member of every mini-

The set of minimal winning coalitions is A o
mal winning coalitions.

1,2},{1,3},{1,4},{2,3,4}}.
{12}, {1,3},{1,4},{ 1) Definition (blocking coalition)

A coalition C C N is a blocking coalition iff C is a losing
coalition and ¥S C N\ €, S\ € is a losing coalition.
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A class of simple games

Weighted voting game is a strict subclass of voting games.

Definition (weighted voting games) i.e., all voting games are not weighted voting games.

A game (N, wjcy,q) is a weighted voting game when
v satisfies unanimity, monotonicity and the valuation

SHES : Example: Let ({1,2,3,4},v) a voting game such that the set
function is defined as

of minimal winning coalitions is {{1,2},{3,4}}. Let us as-
sume we can represent (N,v) with a weighted voting game

1 when w; =
en )_wi>q [g; w1, w2, w3, w4].

U(S = i€S
0 otherwise

v({1,2}) =1 then w1 +w, >¢q

Unanimity requires that } ;nw; > ¢. v({3,4}) =1 then w3 +wy >q

If we assume that Vi € N w; > 0, monotonicity is guaranteed. v({1,3}) =0 then wy +ws; <q

For the rest of the lecture, we will assume w; > 0. v({2,4}) =0 then wy +wy < gq
We will note a weighted voting game (N, wicy,q) as But then, wy 4wy + w3 + w4 < 2 and wq +wy + w3 +wy > 24,
lg; w1,...,wnl. which is impossible. Hence, (N,v) cannot be represented by

a weighted voting game.v/
A weighted voting game is a succinct representation, as we
only need to define a weight for each agent and a threshold.
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Example

Let us consider the game [g; 4,2,1].
o g =1: minimal winning coalitions: {1},{2},{3}
© g =2: minimal winning coalitions: {1},{2}
© ¢ =3: minimal winning coalitions: {1},{2,3}
0 g =4: minimal winning coalition: {1}
© g =>5: minimal winning coalitions: {1,2},{1,3}
© g =6: minimal winning coalition: {1,2}
0 g=7: minimal winning coalition: {1,2,3}

for g = 4 (“majority” weight), 1 is a dictator, 2 and 3 are
dummies.
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Theorem
Let (N,v) be a simple game. Then

_ x| X is an imputation
Core(N,v) = {X eR x; =0 for each non-veto player i

Proof

C Let x € Core(N,v). By definition x(N) =1. Let i be a
non-veto player. x(N\{i}) > v(N\{i}) =1. Hence
X(N\{i}) =1 and x; =0.

O Let x be an imputation and x; =0 for every non-veto

player i. Since x(N) =1, the set V of veto players is
non-empty and x(V) =1.
Let €C N. If € is a winning coalition then V C €, hence
x(€) > v(€). Otherwise, v(€) is a losing coalition (which
may contain veto players), and x(€) > v(€). Hence, x is
group rational.

[}
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Proof
(continuation)
<« Let (N,vy) a unanimity game. Let us prove it is a
convex game. Let SC N and T C N, and we want to
prove that v(S)+o(T) <v(SUT)+o(SNT).

o case VC SNT: Then VCS and V C T, and we have
2<2v
o case VZSNT A VCSUT:

o if VCS then V¢_Tand 1<1v
o if VCTthen VZSand 1<1 v
o otherwise V Q Sand V Q T, and then 0 <1 v
o case VZ SUT: then 0<0 v
For all cases, v(S)+o(T) <v(SUT)+v(SNT), hence a
unanimity game is convex.
In addition, all members of V are veto players.
O
Convex simple games are the games with a single minimal
winning coalition.
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Weights may be deceptive

o Let us consider the game [10; 7,4,3,3,1].

The set of minimal winning coalitions is
{{1,241,3}1,4}42,3,4}}

Player 5, although it has some weight, is a dummy.

Player 2 has a higher weight than player 3 and 4, but it
is clear that player 2, 3 and 4 have the same influence.

Let us consider the game [51; 49,49,2]

©

The set of winning coalition is {{1,2},{1,3},{2,3}}.

It seems that the players have symmetric roles, but it is
not reflected in their weights.
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Stability for simple games
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Theorem
A simple game (N,v) is convex iff it is a unanimity
game (N,vy) where V is the set of veto players.

Proof
A game is convex iff VS,T C N 0(S) +v(T) <o(SNT)+0v(SUT).

= Let us assume (N,v) is convex.
If S and T are winning coalitions, SUT is a winning
coalition by monotonicity. Then, we have 2<1+v(SNT)
and it follows that v(SNT) =1. The intersection of two
winning coalitions is a winning coalition.
Moreover, from the definition of veto players, the
intersection of all winning coalitions is the set V' of veto
players. Hence, v(V)=1.
By monotonicity, if VC €, v(C) =1 ¢
Otherwise, V Q C. Then there must be a veto player
i¢ C, and it must be the case that v(€) =0 v/
Hence, for all coalition € C N, v(€) =1 iff VC €.
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Voting Power
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Shapley-Shubik power index

Definition (Pivotal or swing player)
Let (N,v) be a simple game. A agent i is pivotal or a
swing agent for a coalition € C N\ {i} if agent i turns
the coalition € from a losing to a winning coalition by
joining €, i.e., v(C) =0 and v(CU{i}) =1.

Given a permutation o on N, there is a single pivotal agent.

The Shapley-Shubik index of an agent i is the percentage of
permutation in which i is pivotal, i.e.

[Ct(INT—IC[—1)!

Iss(N,o,i) = ) N

CON\{i}

((€u{i}) —o(€)).

“For each permutation, the pivotal player gets a point.”

The Shapley-Shubik power index is the Shapley value.
The index corresponds to the expected marginal utility assuming
all join orders to form the grand coalitions are equally likely.
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Banzhaff power index

Let (N,v) be a TU game.

o We want to count the number of coalitions in which an
agent is a swing agent.

©

For each coalition, we determine which agent is a swing
agent (more than one agent may be pivotal).

©

The raw Banzhaff index of a player i is
5, Zecnq?IeUE) —u(e)
L on—1 .
For a simple game (N,v), (N) =1 and v(0)) =0, at least
one player i has a power index {3; # 0. Hence,
B= Zje ~NBj>0.

The normalized Banzhaff index of player i for a simple

©

©

i

game (N,v) is defined as Ig(N,v,i) =

The index corresponds to the expected marginal utility assuming
all coalitions are equally likely.
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Paradoxes

The power indices may behave in an unexpected way if we
modify the game.

Paradox of new players
intuition: Adding a voter should decrease the power of the
original voters. -~ not necessarily true!

Consider the game [4;2,2,1]
o Player 3 is dummy, should have an index of 0.
o Assume a new player joins with weight 1.

Player 3 is no longer a dummy, her index has increased
and is strictly positive in the new game.
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Other indices

B3 stéphane Airiau (ILLC) - Cooperative Games Lecture 8: Simple Games 21

o Maybe only minimal winning coalitions are important
to measure the power of an agent (non-minimal
winning coalitions may form, but only the minimal ones
are important to measure power).

o Let (N,v) be a simple game, i € N be an agent.

M(N,v) denotes the set of minimal winning coalitions,
M;(N,v) denotes the set of minimal winning coalitions
containing i.

o The Deegan-Packel power index of player i is:

1

. 1
Ipp(N,v,i) = M) Z e

eeM;(No)
o The public good index of player i is defined as

[Mi(N, )|

Ipg(N,v,i) = =2
pG(N,v,1) TGN,
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Examples: [7; 4,3,2,1]

winning coalitions:
{1,2}

{1,2,3}

{1,2,4}

{1,3,4}

{1,2,3,4}

w
'

T

B
Ig(N,v,i)

| foiws | N

PoI= foolut | =
B

Bl o
Bl=

1123 4

7
Shilslglwls

The Shapley value and Banzhaff index may be different.
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Paradoxes (cont)

Paradox of size

intuition: If a voter splits her identities and share her
weights between the new identities, she should not gain or
lose power. - no necessarily true!

o increase of power
n-player game [n+1;2,1,...,1]: all voters have a Shapley
value of %1
Voter 1 splits into two voters with weight of 1.
In the new game, each agent has a Shapley value of %ﬂ
voter 1 gets more power.

©

decrease of power

n-player game [2n—1;2,...,2]: all voters have the same
Shapley value of 1.

Voter 1 splits into two voters with a welight of 1. These

new voters have a Shapley value of AT in the new

+1
game voter 1 loses power by a factor of *3=.
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©

Coleman indices: all winning coalitions are equally
likely. Let W(N,v) be the set of all winning coalitions.

The power of collectivity to act: Py is the probability
that a winning vote arise.

©

[W(N,v)|

Pt = on

©

The power to prevent an action: Pp,m,,f captures the
power of i to prevent a coalition to win by withholding
its vote.

> ecni v(CU{i}) —o(C)
[W(N,v)|

Ppn’vent =

©

The power to initiate an action: Pj,; captures the power
of i to join a losing coalition so that it becomes a
winning one.

Zegw\mv(eu{m —0(€)

Piyir =

2'—[W(N, )|
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4;3,2,1,1
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{1,2),{1,3},{1,4},
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2,3,4,01,2,3,4) {1.3.4)1,2,3,4}
M={{1,2},{1,3},{1,4,{234)  M={12,{1,34}
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Summary Coming next

o We introduced the simple games o Representation and Complexitity issues

o Are there some succinct representations for some classes

o We considered few examples
of games.

o We studied indi - )
¢ studied some power Indices o How hard is it to compute a solution concept?
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